If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(x^2)+36x+77=0
a = 4; b = 36; c = +77;
Δ = b2-4ac
Δ = 362-4·4·77
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-8}{2*4}=\frac{-44}{8} =-5+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+8}{2*4}=\frac{-28}{8} =-3+1/2 $
| 15/t=5/11 | | Z2-9z=-20 | | 4x-8+3x=2+7x-10 | | 3b÷2=12 | | 3x+(X*x)/16x+4x=99 | | 7y-9-4y+5=0 | | 4x=-2x-22 | | -0.73z1.47= | | $99-m=299$ | | 25x÷45=-65 | | 0.06w+0.1(20-w)=0.08 | | 10y^2-16y=-6 | | 13=25-4k | | 435−32x=179 | | 9x+1-7=x+2x+12 | | x/10=500 | | x(x-10x)=0 | | 6x2+6x-12=0 | | 70-6/5*x^2=7/5*x^2+4 | | F(x)=3x^2+5x+1 | | m/2=50 | | 7x+4=52x-1 | | 20(v+3)-4v=4(4v+3)-13 | | a/5=100 | | Y=-8/9x | | 5(2x-9)-8(0.5-3x)=4(7x-1)-3 | | Y=-8/9x+ | | 4x^2-11x+14=-2x+9 | | 4x+29+7x-10=5x-9 | | 3/8(p-8)+1/8p=-1/2(p-7) | | 2x-(5(2x-4)-3)=7 | | 0=4m^2-4m-3 |